
Factory Resets and Obtaining Notifications on Samsung Android Devices

Ryan Johnson
Angelos Stavrou

Kryptowire
USA

ABSTRACT

We have identified software vulnerabilities present in two different system apps in multiple Samsung Android
releases. The two vulnerabilities expose systemic problems with the inadequacy of testing for pre-loaded vendor
applications. The vulnerable system apps are persistent and cannot be disabled or uninstalled by the user unless the
user has root privileges on the device. The first vulnerability can be manipulated to programmatically initiate a
factory reset of certain devices from a zero-permission Android app. During a factory reset, the user would most
likely lose application data, photos, videos, text messages, and anything else that is not synced or backed up to a
separate device. The attack is tested to be successful for certain Android 5.0.2 and 5.1.1 releases for the following
Samsung Galaxy devices: S6, S6 Edge, S6 Edge+, and Note 5. The vulnerability is introduced by a system app
declaring an application component twice in an app’s manifest file, which causes the access requirements of the
second declaration to overwrite those of the first declaration. The second vulnerability is the ability to obtain the
text of notifications from a zero-permission Android app on 5.0.2 builds for the Samsung Galaxy S6 Edge. This
vulnerability was introduced in the initial Android 5.0.2 builds for the Samsung Galaxy S6 Edge devices, but the
vulnerability can persist on the device even after the device has been upgraded to an Android 5.1.1 or 6.0.1 build.
The vulnerable system app gives a non-existent app the ability to read the notifications from the device, which a
third-party app can utilize. This vulnerability allows an unprivileged third-party app to obtain the text of the user’s
notifications, which tend to contain personal data.

KEYWORDS: Mobile Security, Android, Vulnerabilities, Permission Leakage, Samsung

INTRODUCTION

Currently, mobile devices are being delivered to the end users with a wealth of pre-loaded software from the device
manufacturer and other vendors that usually include the telecommunications company that offers the service plans.
In many cases, this pre-loaded software runs as a system application that enables higher levels of privilege than what
is granted to third-party applications. Moreover, some apps cannot be removed or disabled by the end-user without
utilizing third-party software to “root” the device, in essence violating both the device warranty and exposing the
user to potentially malicious third-party software. Thus, there is a clear need for the device manufacturers and other
vendors to have a more rigorous process for vetting applications before their apps reach end-user devices because
any vulnerabilities that they might contain cannot be easily fixed since a major patch that affects millions of devices
has to be issued. In the next paragraphs, we provide the technical details that can allow malicious actors to perform
privileged activities and disrupt the operation of devices equipped with the vulnerable versions of system
applications. These applications exemplify the dangers from manufacturer and vendor applications that contain
software flaws that can be translated into security threats.

INITIATING FACTORY RESETS FROM A ZERO-PERMISSION THIRD-PARTY APP

Indeed, as part of our research, we were able to identify Samsung-developed applications that were vulnerable to
different attacks. One of the applications is installed on the system partition of certain Samsung Android 5.0.2 and
5.1.1 builds that allows a zero-permission third-party app to factory reset the device by sending a single broadcast
intent. A factory reset results in the data and cache partitions being wiped on the device. The user will lose any data
that is not synced or backed up to another device. We have confirmed that a vulnerable version of this system app
exists on certain Android 5.0.2 and 5.1.1 builds for Samsung Galaxy S6, Samsung Galaxy S6 Edge, Samsung
Galaxy S6 Edge+, and Samsung Galaxy Note 5 devices. The entire list containing 82 vulnerable builds we identified
for these devices is provided in Appendix 1. The vulnerability is introduced by a system app that declares a

broadcast receiver application component with the same name twice in its AndroidManifest.xml file. The first
declaration uses a signature or system level custom permission to prevent third-party apps from accessing it. The
second declaration of the broadcast receiver is not protected by a custom permission and is exported by default. The
second declaration of the broadcast receiver overwrites the access requirements from the first declaration, which
makes it accessible to third-party apps, while preserving the intent filters from the first declaration. Permission
leakage occurs when an app without a specific permission is able to perform permission-protected functionality or
obtain permission-protected data. Researchers (Bagheri, 2015; Chin, 2011, June; Grace, 2012, February; Octeau,
2013) have developed approaches to detect and prevent permission leakage in Android apps. In Android, it is
incumbent on the app developer to prevent permission leakage by setting the access requirements for their
application components in the app’s AndroidManifest.xml file. In addition, using a double declaration of an
application component in the AndroidManifest.xml file where the access requirements of the second declaration
overwrite those of the first declaration creates a vulnerability is introduced and explained in this manuscript.

ATTACK METHOD

The vulnerable app has a package name of com.sec.android.app.servicemodeapp and has a path of /system/priv-
app/serviceModeApp_FB.apk. This app declares a broadcast receiver application component twice with the same
value for the android:name attribute in its AndroidManifest.xml file. The application component named
ServiceModeAppBroadcastReceiver can initiate a factory reset of the device. This broadcast receiver declares an
intent filter with an action string of com.samsung.intent.action.SEC_FACTORY_RESET_WITHOUT_FACTORY_UI.
The first declaration of the broadcast receiver is protected by a custom permission named
com.sec.android.app.servicemodeapp.permission.KEYSTRING that has an android:protectionLevel of
signatureOrSystem. The KEYSTRING custom permission is declared in the serviceModeApp_FB.apk app’s
AndroidManifest.xml file. A permission-protected application component that has the android:protectionLevel
attribute set to a value of signatureOrSystem restricts applications that can interact with it to applications installed on
the system partition or apps that are signed with the same certificate. The second declaration with same application
component name is not protected by a custom permission and does not explicitly declare that the application
component should not be exported. This second declaration of the application component will be exported by default
since it declares at least one intent filter and does not explicitly declare that it should not be exported. Appendix 2
shows the double declaration of the broadcast receiver application with the same name and differing access
requirements from the serviceModeApp_FB.apk app’s AndroidManifest.xml file.

We reference the Android Open Source Project (AOSP) Android 6 source code to explain what occurs when a
broadcast receiver application component with the same name is registered twice in an app’s AndroidManifest.xml
file. The com.android.server.pm.PackageManagerService class (“PackageManagerService,” n.d.) handles the
installation, uninstallation, and updating of Android applications. PackageManagerService uses the
android.content.pm.PackageParser class (“PackageParser,” n.d.) to parse an Android Package (APK) file including
its AndroidManifest.xml file. The PackageManagerService.installPackageLI(InstallArgs, PackageInstalledInfo)
method is used to install apps on the device. This method uses the PackageParser class to parse the APK file, which
returns a PackageParser.Package object. This object contains the data from all the application components that are
declared in the app’s AndroidManifest.xml file. If the APK is a new app and is not replacing a previous package, the
PackageManagerService.installNewPackageLI(PackageParser.Package, int, int, UserHandle, String, String,
PackageInstalledInfo) method is called, which will occur when the serviceModeApp_FB.apk app is first installed.
This method calls the PackageManagerService.scanPackageLI(PackageParser.Package, int, int, long, UserHandle)
method. This method then calls the PackageManagerService.scanPackageDirtyLI(PackageParser.Package, int, int,
long, UserHandle) method, which performs various actions to install the app. It will iterate through a
java.util.ArrayList object, which contains all the broadcast receivers declared in the app’s AndroidManifest.xml file
from when it was parsed. This ArrayList object contains the two instances of the
ServiceModeAppBroadcastReceiver broadcast receiver. It will add each broadcast receiver, whose type is
PackageParser.Activity, into a PackageManagerService.ActivityIntentResolver object using its
addActivity(PackageParser.Activity, String) method. The
ActivityIntentResolver.addActivity(PackageParser.Activity, String) method will add each broadcast receiver into an
instance variable named mActivities contained within the PackageManagerService object. The mActivities object has
a type of android.util.ArrayMap and contains all the activity application components and broadcast receiver
application components from apps installed on the device. The addActivity(PackageParser.Activity, String) method

will also add the intent filters for the first instance of ServiceModeAppBroadcastReceiver broadcast receiver, which
is protected by a signature or system level custom permission, using the addFilter(F) method of the
com.android.server.IntentResolver class (“IntentResolver,” n.d.) so the intent filters can be resolved and associated
with the broadcast receiver by its component name.

The second instance of the ServiceModeAppBroadcastReceiver broadcast receiver, which is not protected by a
custom permission and is exported by default, will be obtained from the ArrayList object containing all broadcast
receivers. Again the ActivityIntentResolver.addActivity(PackageParser.Activity, String) method is called to process
the broadcast receiver. It will be added to the mActivities object that has a type of android.util.ArrayMap. The
android.util.ArrayMap class (“ArrayMap,” n.d.) stores key-value pairs that behaves similar to a java.util.HashMap
object even though the underlying implementation contains an int array to hold hashes of the keys (i.e., component
name) and a java.lang.Object array to hold the values (i.e., the corresponding PackageParser.Activity object). The
second instance of the ServiceModeAppBroadcastReceiver broadcast receiver is added to the ArrayMap object using
its put(K key, V value) method. This will effectively overwrite the previous PackageParser.Activity object for the
ServiceModeAppBroadcastReceiver broadcast component, which has a signature or system level custom permission,
with the next PackageParser.Activity object for the ServiceModeAppBroadcastReceiver broadcast component which
is not protected by a custom permission and is exported by default. All of the intent filters for both instances of the
ServiceModeAppBroadcastReceiver broadcast receivers will have been registered via the
com.android.server.IntentResolver.addFilter(F) method call that is called for each instance of two broadcast
receivers with the same name.

The second instance of the ServiceModeAppBroadcastReceiver broadcast receiver will overwrite the first instance of
the ServiceModeAppBroadcastReceiver broadcast receiver declared in AndroidManifest.xml file. The
AndroidManifest.xml file is parsed serially from beginning to the end and the second instance of
ServiceModeAppBroadcastReceiver broadcast receiver is exported and not protected by a custom permission. In
addition, the ArrayMap object’s put(K key, V value) method allows for the overwriting due to its behavior to mimic
a HashMap object. This removes the permission protection from the application component so that any third-party
application resident on the device can successfully send a broadcast intent to the ServiceModeAppBroadcastReceiver
broadcast receiver application component. We are not sure how prevalent this weak programming practice is in
general, but some of Samsung’s developers made this error, so it may exist in other Android applications. The code
to factory reset devices with a vulnerable version of the serviceModeApp_FB.apk app is shown in Figure 1.

Figure 1: Source code to initiate a factory reset of vulnerable Samsung Android devices.

When this broadcast intent is received by the ServiceModeAppBroadcastReceiver, it will call the
ServiceModeAppBroadcastReceiver.DoCPReset(android.content.Context) method. The
DoCPReset(android.content.Context) method sends an intent with the action of android.intent.action.MAIN to the
com.sec.android.app.servicemodeapp/com.sec.android.app.modemui.activities.ModemReset service application
component with an extra value of FACTORY set to a Boolean value of true. This is received by the ModemReset
service application component within the same app. In its onStart(android.content.Intent, int) callback method, the
intent is checked to see if the FACTORY extra has a Boolean value of true. If this is the case, then the
ModemReset.SendResetCommandToRIL() method is called. This method will send a raw Original Equipment
Manufacturer (OEM) Radio Interface Layer (RIL) request with the function of 12 and a sub-function of 1 with a
payload of 2. It sends the raw OEM RIL request using the
com.samsung.android.sec_platform_library.FactoryPhone.invokeOemRilRequestRaw(byte[], android.os.Message)
method.

This OEM RIL request will result in the android.intent.action.MASTER_CLEAR broadcast intent being sent. This
broadcast intent is received by the com.android.server.MasterClearReceiver broadcast receiver application
component in the core android package. This receiver declares an intent filter to receive intents with the action of
MASTER_CLEAR. This receiver is protected by the android.permission.MASTER_CLEAR permission. The
MASTER_CLEAR permission has an android:protectionLevel of signatureOrSystem for Android 5.1.1. The

serviceModeApp_FB.apk app requests the MASTER_CLEAR permission in its AndroidManifest.xml file and is a
system app, so it has the capability to perform a factory reset of the device.

The com.android.server.MasterClearReceiver calls the android.os.RecoverySystem.rebootWipeUserData(
android.content.Context) method. This method sends an ordered broadcast with the action of
android.intent.action.MASTER_CLEAR_NOTIFICATION. The MASTER_CLEAR_NOTIFICATION is a protected
broadcast that only the system can send. The com.android.nfc.NfcService service application component
dynamically registers a broadcast receiver for this broadcast intent. Once the broadcast intent is received, it creates
an NfcService.EnableDisableTask object, which has a type of android.os.AsyncTask, with the TASK_EE_WIPE
constant as a parameter. The EnableDisableTask.executeEeWipe() method is called which initiates a wipe of the
device through the native methods of the com.android.nfc.nxp.NativeNfcSecureElement class via the Java Native
Interface calls to the com_android_nfc_NativeNfcSecureElement.cpp class. This action results in a factory reset of
the device.

THREAT MODEL AND THREAT RESOLUTION

We assume that the user downloads and installs the malicious app via an official or unofficial app marketplace or
sideloads the app. The code to factory reset the device can be introduced by repackaging a popular app and posting it
on an official or third-party application market which is a common method to distribute malware (Potharaju, 2012;
Vidas, 2013; Zhou, 2012). It is also possible that a user can be lured into installing the malicious app via social
engineering (Bhattacharya, 2014; Fedler, 2013). The app requires no permissions, so the user may think the app is
generally unprivileged and cannot initiate a factory reset of the device. The app with a package name of
com.sec.android.app.servicemodeapp contains the broadcast receiver application component with two declarations
that have differing protection levels. This app cannot be disabled or uninstalled by the user unless the device is
rooted. The vulnerable app will remain on the device until Samsung resolves the vulnerability by updating the app,
although it does not appear to be present in the Android 6.0.1 builds.

SAMSUNG S6 EDGE NOTIFICATION LISTENER VULNERABILITY
	
Certain Samsung Galaxy S6 Edge devices contain a vulnerability where the installation of a zero-permission third-
party app with a specific package name can allow the app to read the content of notifications on the device without
any further action from the user. This vulnerability appears to be limited to Samsung Galaxy S6 Edge devices that
started out with an Android 5.0.2 build. If the user utilizes the “Information Stream” feature while using an Android
5.0.2 build, this introduces the vulnerability on the device by allowing a specific component name to receive
notifications even though the corresponding app is not installed on the device. A component name serves as a unique
identifier that contains the package name of an app and a class name contained within the package. The
“Information Stream” feature is where the notifications are displayed on the right edge of the screen while the rest of
the screen is off. If the vulnerability was introduced while using an Android 5.0.2 build, then the vulnerability
should still be present on the same device even after it has been updated to Android 5.1.1 or Android 6.0.1 unless the
user has performed a factory reset of the device or uninstalled a different notification listener app without first
disabling it as a notification listener in the Settings app. To exploit the vulnerability, a third-party app with a specific
component name (com.samsung.android.app.portalservicewidget/.notifications.CatchNotificationsService) needs to
be installed on the device. Once the user installs the third-party app containing the specific component name, the app
can read the content of all subsequent notifications on the device. This app will start receiving notifications once the
user installs the app, and the user does not need to launch the app to activate it. After each reboot, the app starts
execution right after the Samsung Galaxy S6 Edge has completed the boot process even without the	
android.permission.RECEIVE_BOOT_COMPLETED	 permission. Once the app is installed, it will persistently
execute to obtain and optionally exfiltrate the notification data. This vulnerability was assigned the CVE-2016-6910
identifier in the Common Vulnerabilities and Exposures (CVE) database.
	
NOFITICATION LISTENER CAPABILITY
	
A third-party app can receive the user’s notifications if the user explicitly grants this ability to an app via the
Settings app. The com.android.settings/.Settings.NotificationAccessSettingsActivity component handles the enabling

and disabling of component names that can receive the user’s notifications. For an app to receive the user’s
notifications, the app will need to have a class that extends the
android.service.notification.NotificationListenerService class and declare it as a service in a particular way in the
app’s AndroidManifest.xml file (“NotificationListenerService,” n.d.). A notification listener app implements
callback methods from the NotificationListenerService class that will be executed as notifications are posted or
removed. The notification listener app receives an android.service.notification.StatusBarNotification object when a
notification is posted. The StatusBarNotification object contains an android.app.Notification object, which contains
the actual text of the notification that is displayed to the user.
	
Once a user enables an app to be a notification listener via the Settings app, the Settings app will write the name of
the component that extends the NotificationListenerService class of the user-selected app to the secure table of the
settings.db file. The settings.db file is an SQLite database that contains various configuration and settings values that
are used throughout the Android Operating System (OS).
/data/data/com.android.providers.settings/databases/settings.db is generally the path to the file. The Settings app,
having a package name of com.android.settings, can write to the secure table of the settings.db file since it is a
system app that has been granted the android.permission.WRITE_SECURE_SETTINGS permission. A third-party
app will not be granted the WRITE_SECURE_SETTINGS permission since the app needs to be installed on the
system partition or be signed with the device platform key to utilize this permission.
	
NON-EXISTENT NOTIFICATION LISTENER APP VULNERABILITY
	
The secure table in the settings.db file, corresponding to the android.provider.Settings.Secure class
(“Settings.Secure,” n.d.) in the Android Application Programming Interface (API), has three columns: _id, name,
and value. There is a row in the secure table where the name column contains enabled_notification_listeners and the
value column contains a list of components that are allowed to receive the user’s notifications. We will refer to this
list of components value as the list of enabled_notification_listeners. This value can also be empty or contain a
single component name. If there is more than one component that is a notification listener, then the component
names will be delimited by a colon. Any component in the colon-separated list of enabled_notification_listeners has
the ability to receive the notifications on the device. The enabled_notification_listeners string corresponds to the
android.provider.Settings.Secure.ENABLED_NOTIFICATION_LISTENERS string constant, although it is not
visible as part of the public Android API (“Settings,” n.d.), it can be accessed using Java reflection. If a component
name is in the list of enabled_notification_listeners, and the corresponding app is not installed on the device, then a
third-party app can be installed that contains this component name to utilize this pre-established capability to
become a notification listener. Therefore, care should be taken not to introduce any components in the list of
enabled_notification_listeners that do not have a corresponding app installed on the device.
	
We are unsure of the exact scope of the affected Samsung Galaxy S6 Edge builds. We have confirmed that the
vulnerability can be introduced in all of the models we have tested so far (SM-G925V, SM-G925F, SM-G925A, SM-
G925X, SM-G9250, SM-G925K, SM-G925L, SM-G925P, SM-G925R4, SM-G925S, SM-G925T, SM-G925I, and SM-
G925W8). Appendix 3 contains 40 different Android 5.0.2 builds that we identified which can introduce the
vulnerability. We will focus on the Samsung Galaxy S6 Edge SM-G925V model to explain the vulnerability. All of
the Android 5.0.2 builds (i.e., LRX22G.G925VVRU1AOC3, LRX22G.G925VVRU1AOE2, and
LRX22G.G925VVRU2AOF1) for the SM-G925V model can introduce the vulnerability on the device. The Android
5.1.1 builds for the SM-G925V model cannot introduce the vulnerability, although the vulnerability should still exist
on the device if it was present before the device was upgraded to an Android 5.1.1 build.

Focusing on the SM-G925V Samsung Galaxy S6 Edge Android 5.0.2 LRX22G.G925VVRU1AOC3 build, we will
explain how the vulnerability is introduced on the device. This build has the CocktailBarService.apk installed on the
system partition with a package name of com.samsung.android.app.cocktailbarservice. We noticed that the
com.samsung.android.app.cocktailbarservice.policy.CocktailBarOverlayPolicy class of this app gives two
component names the ability to read the notifications on the device by writing them to list of
enabled_notification_listeners in the secure table of the settings.db file. This app has the
WRITE_SECURE_SETTINGS permission, which allows it to write to the secure table of the settings.db file. The
CocktailBarOverlayPolicy.callOnCreate() method calls the loadEnabledListeners() method and then calls the
saveEnabledListeners() method in the CocktailBarOverlayPolicy class. The loadEnabledListeners() method reads

the list of enabled_notification_listeners from the secure table of the settings.db file into a java.util.HashSet object.
It then attempts to add the com.samsung.android.app.catchfavorites/.catchnotifications.CatchNotificationsService
and com.samsung.android.app.portalservicewidget/.notifications.CatchNotificationsService component names to the
HashSet object. Since the data structure is a HashSet object, each element must be unique. Therefore, these two
component names will not be added if they already exist in the HashSet object. The saveEnabledListeners() method
writes the contents of the HashSet object as a colon-separated list to the value column of the row that has a value of
enabled_notification_listeners for the name column in the secure table of the settings.db file.
	
The CocktailBarOverlayPolicy.callOnCreate() method is called by the
com.samsung.android.app.cocktailbarservice.CocktailBarService.onCreate() service method. Therefore, whenever
the CocktailBarService service application component is created, it will add the two previously mentioned
component names to the colon-separated list of enabled_notification_listeners if they were not previously in the list.
In the LRX22G.G925VVRU1AOC3 build, the app with a package name of com.samsung.android.app.catchfavorites
is installed on the device, but the app with a package name of com.samsung.android.app.portalservicewidget is not
installed on the device. Therefore, if a third-party app that has a component with the same component name (i.e.,
com.samsung.android.app.portalservicewidget/.notifications.CatchNotificationsService) is installed on the device,
then it will obtain the capability of being a notification listener as soon as it is installed.

The CocktailBarService service application component needs to be activated while the device is running an Android
5.0.2 build to add these two component names to the list of enabled_notification_listeners. The CocktailBarService
service application component is activated when the user rubs the right edge of the screen when the device’s display
is off. Rubbing the right edge of the screen while the device’s display is off will make the clock and current
notifications visible to the user by activating the “Information Stream.” This is a feature of the Samsung Galaxy S6
Edge that differentiates it from the Samsung Galaxy S6. If the user has never rubbed the right edge of the screen
while the device’s display is off while the device was running an Android 5.0.2 build, then these two component
names, mentioned above, will most likely not have been added to the list of enabled_notification_listeners. If the
device is still running an Android 5.0.2 build, then an app with a package name of
com.samsung.android.app.portalservicewidget can send an android.content.Intent object to start the
CocktailBarService service application component so it will add the
com.samsung.android.app.portalservicewidget/.notifications.CatchNotificationsService component name to the list
of enabled_notification_listeners. This will enable the app to become a notification listener. The source code snippet
in Figure 2 will launch the CocktailBarService service from a service application component of an external app.

Figure 2. Launching the CocktailBarService application component from a third-party app.

	
In Samsung Galaxy S6 Edge Android 5.1.1 builds, the source code snippet above will not write the
com.samsung.android.app.portalservicewidget/.notifications.CatchNotificationsService component name to the list
of enabled_notification_listeners since the CocktailBarOverlayPolicy class will not add a component to the list of
enabled_notification_listeners unless the com.samsung.android.app.catchfavorites app is not actually installed on
the device. This app is present on the Android 5.1.1 builds we have examined, but only the Android 5.0.2 builds will
introduce the vulnerability, whereas the Android 5.1.1 and 6.0.1 builds will not.
	
In addition, it appears that the Samsung Galaxy S6 Edge Android 5.1.1 builds (and possibly the Android 5.0.2
builds) will remove non-existent notification listeners (i.e., apps that have a component name is the list of
enabled_notification_listeners but are not installed on the device) under certain circumstances. For example, if the
user enabled an app as a notification listener in the Settings app and uninstalls the app without first disabling it as a
notification listener via the Settings app, this can force each component name in the list of
enabled_notification_listeners to be examined to see if the corresponding app is installed on the device. When this
occurs, the Android OS will remove any component name in the list of enabled_notification_listeners that does not
have a corresponding app installed. If the notification listener app that the user previously enabled is first disabled
from being a notification listener and then is uninstalled, this will not trigger an examination of the list of
enabled_notification_listeners to remove non-existent notification listeners. If the user has never explicitly enabled

an app as a notification listener, then the removal of non-existent notification listeners should never have been
triggered.

This settings.db file, which contains the list of enabled_notification_listeners, does not get overwritten when the
device receives a Firmware Over-The-Air (FOTA) update. The files that reside on the data (i.e., userdata) partition,
including the settings.db file, generally survive intact as the system partition is updated (“OTA Updates,” n.d.). The
settings.db file should remain the same unless the Settings app or another system app that has the
WRITE_SECURE_SETTINGS permission explicitly modifies the settings.db file. In the Samsung Galaxy S6 Edge
devices we examined, the com.samsung.android.app.portalservicewidget/.notifications.CatchNotificationsService
component was in the list of enabled_notification_listeners even though the Samsung Galaxy S6 Edge devices were
running Android 5.1.1. Therefore, this component name will most likely persist in these devices even as they are
updated, unless the user performs a factory reset on the device or a subsequent FOTA update of the Android OS
contains a system app that specifically removes the
com.samsung.android.app.portalservicewidget/.notifications.CatchNotificationsService entry from the list of
enabled_notification_listeners.

THREAT MODEL
	
We assume that the user downloads and installs a malicious notification listener app via an official or unofficial app
marketplace or sideloads the app. The code to obtain the content of notifications can be introduced by repackaging a
popular app and posting it on a third-party application market which is a common method to distribute malware
(Potharaju, 2012; Vidas, 2013; Zhou, 2012). It is also possible that a user can be lured into installing the malicious
app via social engineering (Bhattacharya, 2014; Fedler, 2013). The app needs to have a package name of
com.samsung.android.app.portalservicewidget and also have component named
com.samsung.android.app.portalservicewidget/.notifications.CatchNotificationsService that extends the
NotificaitonListenerService class which will allow it to obtain the notifications and execute whenever the device is
on. The app will start execution after the boot process has completed even without the
RECEIVE_BOOT_COMPLETED permission. This functionality can be accomplished from a zero-permission app,
although the INTERNET permission may be required if the app is to surreptitiously exfiltrate the content of the
notifications to a remote location.
	
THREAT RESOLUTION
	
The Android 5.1.1 builds for the Samsung Galaxy S6 Edge will not add the
com.samsung.android.app.catchfavorites/.catchnotifications.CatchNotificationsService or the
com.samsung.android.app.portalservicewidget/.notifications.CatchNotificationsService component names to list of
enabled_notification_listeners unless the corresponding apps are actually installed on the device. This precaution
made it so that the vulnerability will not be introduced on devices that have never run an Android 5.0.2 build, but the
vulnerability should still be present on devices that have run an Android 5.0.2 build, since the settings.db file,
residing on the data partition, generally remains the same after FOTA updates. Therefore, the next FOTA update for
the Samsung Galaxy S6 Edge should explicitly remove the com.samsung.android.app.portalservicewidget/
.notifications.CatchNotificationsService component, if it exists, in the colon-separated list of
enabled_notification_listeners. This should be performed by a system app that has the WRITE_SECURE_SETTINGS
permission.

The user can install an app with the package name of com.samsung.android.app.portalservicewidget and then
subsequently uninstall this app. When an app is uninstalled and it has a component name in list of
enabled_notification_listeners, then its component name will be removed from the list of
enabled_notification_listeners if it is not disabled as a notification listener prior to uninstalling it. The
com.samsung.android.app.portalservicewidget app was never installed on the device, so it’s component name was
never removed from the list of enabled_notification_listeners after it was written to the list of
enabled_notification_listeners by the app with a package name of com.samsung.android.app.cocktailbarservice.
	
	

CONCLUSION

We have shown the risk of insecure system applications that come pre-loaded on certain Android devices by
explaining two vulnerabilities present in certain Samsung Android builds. Our analysis resulted in the discovery of
two vulnerable system applications that allow a zero-permission third-party Android application the ability to
factory reset the device and also the ability to obtain the text of the notifications received by the user. In addition, we
have discovered and explained the consequences of declaring two application components having the same name but
having differing access requirements. Third-party applications may be able to interact with more-privileged system
applications depending on the access requirements. In certain circumstances, an unprivileged third-party application
can have the system application perform a privileged action on its behalf, which can result in permission leakage.
Moreover, system applications can introduce vulnerabilities that can be exploited by third-party applications even
when the system applications are not directly accessible to the third-party applications. The system applications on
Android should undergo a more thorough security analysis before being put onto a user’s device, especially when
they cannot be removed or disabled by the user.

ACKNOWLEGEMENTS

This paper was partly supported by Department of Homeland Security, Science and Technology contracts
D15PC00178 and D15PC00154. Any opinions, findings, and conclusion or recommendations expressed in this
material are those of the authors and do not necessarily reflect the view of DHS or the US government.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

APPENDIX 1

Models and Builds that contain a vulnerable version of the serviceModeApp_FB.apk that allows the phone to

be factory reset from a zero-permission third party app.

Device Model OS Version Build Number
GS6 SM-G920I 5.1.1 LMY47X.G920IDVU3DOJ6
GS6 SM-G920I 5.1.1 LMY47X.G920IDVU3COJ7
GS6 SM-G920I 5.1.1 LMY47X.G920IDVU2COGA
GS6 SM-G920K 5.0.2 LRX22G.G920KKKU1AOF6
GS6 SM-G920K 5.0.2 LRX22G.G920KKKU1AOD8
GS6 SM-G920K 5.0.2 LRX22G.G920KKKU1AODC
GS6 SM-G920K 5.1.1 LMY47X.G920KKKU2COH7
GS6 SM-G920K 5.1.1 LMY47X.G920KKKU3COJ2
GS6 SM-G920K 5.1.1 LMY47X.G920KKKU2BOG7
GS6 SM-G920K 5.1.1 LMY47X.G920KKKU2BOG8
GS6 SM-G920K 5.1.1 LMY47X.G920KKKU2COH9
GS6 SM-G920K 5.1.1 LMY47X.G920KKKU2BOGB
GS6 SM-G920K 5.1.1 LMY47X.G920KKKU3COI6
GS6 SM-G920V 5.0.2 LRX22G.G920VVRU1A0E2
GS6 SM-G920V 5.1.1 LMY47X.G920VVRU3BOG5

Note 5 SM-N920C 5.1.1 LMY47X.N920CXXU1AOGE
Note 5 SM-N920G 5.1.1 LMY47X.N920GUBU1AOH6
Note 5 SM-N920G 5.1.1 LMY47X.N920GUBU1AOI1
Note 5 SM-N920G 5.1.1 LMY47X.N920GUBU1AOI2
Note 5 SM-N920G 5.1.1 LMY47X.N920GDDU2AOJ5
Note 5 SM-N920K 5.1.1 LMY47X.N920KKKU2AOI8
Note 5 SM-N920L 5.1.1 LMY47X.N920LKLU2AOI8
Note 5 SM-N920P 5.1.1 LMY47X.N920PVPS2AOK3
Note 5 SM-N920P 5.1.1 LMY47X.N920PVPU1AOI6
Note 5 SM-N920S 5.1.1 LMY47X.N920SKSU2AOI8
Note 5 SM-N920T 5.1.1 LMY47X.N920TUVU2COI5
Note 5 SM-N920V 5.1.1 LMY47X.N920VVRU2AOGJ

GS6 Edge+ SM-G9280 5.1.1 LMY47X.G9280ZCU2AOJ8
GS6 Edge+ SM-G9280 5.1.1 LMY47X.G9280ZCU2AOJ9
GS6 Edge+ SM-G9287 5.1.1 LMY47X.G9287ZHU1AOGF
GS6 Edge+ SM-G9287 5.1.1 LMY47X.G9287ZHU1AOH5
GS6 Edge+ SM-G9287 5.1.1 LMY47X.G9287ZHU2AOJ6
GS6 Edge+ SM-G9287 5.1.1 LMY47X.G9287ZHU1AOH2
GS6 Edge+ SM-G9287 5.1.1 LMY47X.G9287ZHU1AOI1
GS6 Edge+ SM-G9287 5.1.1 LMY47X.G9287ZHU2AOJ7
GS6 Edge+ SM-G928C 5.1.1 LMY47X.G928CXXU1AOH3
GS6 Edge+ SM-G928C 5.1.1 LMY47X.G928CXXU1AOH4
GS6 Edge+ SM-G928C 5.1.1 LMY47X.G928CXXU1AOI1
GS6 Edge+ SM-G928C 5.1.1 LMY47X.G928CXXU2AOJ5
GS6 Edge+ SM-G928G 5.1.1 LMY47X.G928GDDU1AOH3
GS6 Edge+ SM-G928G 5.1.1 LMY47X.G928GDDU1AOGL
GS6 Edge+ SM-G928G 5.1.1 LMY47X.G928GUBU1AOH6
GS6 Edge+ SM-G928G 5.1.1 LMY47X.G928GUBU1AOGJ
GS6 Edge+ SM-G928G 5.1.1 LMY47X.G928GUBU1AOH4
GS6 Edge+ SM-G928G 5.1.1 LMY47X.G928GUBU1AOH5
GS6 Edge+ SM-G928T 5.1.1 LMY47X.G928TUVU1AOGD
GS6 Edge+ SM-G928T 5.1.1 LMY47X.G928TUVU1BOH4
GS6 Edge+ SM-G928T 5.1.1 LMY47X.G928TUVU1BOH6
GS6 Edge SM-G9250 5.0.2 LRX22G.G9250ZTU1AODC

GS6 Edge SM-G9250 5.0.2 LRX22G.G9250ZCU1AOE7
GS6 Edge SM-G9250 5.0.2 LRX22G.G9250ZTU1AOEA
GS6 Edge SM-G9250 5.0.2 LRX22G.G9250ZCU1AOE4
GS6 Edge SM-G9250 5.0.2 LRX22G.G9250ZCU1AOE8
GS6 Edge SM-G9250 5.0.2 LRX22G.G9250ZCU1AOF8
GS6 Edge SM-G9250 5.0.2 LRX22G.G9250ZTU1AOF1
GS6 Edge SM-G925A 5.1.1 LMY47X.G925AUCU3BOJ7
GS6 Edge SM-G925A 5.1.1 LMY47X.G925AUCU3BOJ9
GS6 Edge SM-G925F 5.0.2 LRX22G.G925FXXUA1OCZ
GS6 Edge SM-G925F 5.0.2 LRX22G.G925FXXU1AOCV
GS6 Edge SM-G925I 5.0.2 LRX22G.G925IDVU1AOE2
GS6 Edge SM-G925K 5.0.2 LRX22G.G925KKKU1AOD8
GS6 Edge SM-G925K 5.0.2 LRX22G.G925KKKU1AODC
GS6 Edge SM-G925K 5.0.2 LRX22G.G925KKKU1AOE6
GS6 Edge SM-G925K 5.0.2 LRX22G.G925KKKU1AOF6
GS6 Edge SM-G925K 5.1.1 LMY47X.G925KKKU2BOG7
GS6 Edge SM-G925K 5.1.1 LMY47X.G925KKKU2COH7
GS6 Edge SM-G925K 5.1.1 LMY47X.G925KKKU2COH7
GS6 Edge SM-G925L 5.0.2 LRX22G.G925LKLU1AOD8
GS6 Edge SM-G925L 5.0.2 LRX22G.G925LKLU1AODC
GS6 Edge SM-G925L 5.0.2 LRX22G.G925LKLU1AOE6
GS6 Edge SM-G925S 5.0.2 LRX22G.G925SKSU1AOD5
GS6 Edge SM-G925S 5.0.2 LRX22G.G925SKSU1AOD8
GS6 Edge SM-G925S 5.0.2 LRX22G.G925SKSU1AODC
GS6 Edge SM-G925S 5.0.2 LRX22G.G925SKSU1AOE6
GS6 Edge SM-G925S 5.0.2 LRX22G.G925SKSU1AOF3
GS6 Edge SM-G925V 5.0.2 LRX22G.G925VVRU1AOE2
GS6 Edge SM-G925V 5.0.2 LRX22G.G925VVRU2AOF1
GS6 Edge SM-G925V 5.1.1 LMY47X.G925VVRU3BOG5
GS6 Edge SM-G925W8 5.0.2 LRX22G.G925W8VLU1AOE1
GS6 Edge SM-G925W8 5.0.2 LRX22G.G925W8VLU2AOG2
GS6 Edge SC-04G 5.0.2 LRX22G.SC04GOMU1AOD2
GS6 Edge SC-04G 5.0.2 LRX22G.SC04GOMU1AOE1
GS6 Edge SC-04G 5.0.2 LRX22G.SC04GOMU1AOH4
GS6 Edge SC-04G 5.0.2 LRX22G.SC04GOMU1AOG3

APPENDIX 2

The ServiceModeAppBroadcastReceiver being declared twice from a Samsung S6 Edge running 5.1.1 with a
build number of LMY47X.G925AUCU3BOJ7.

	
 E: receiver (line=161)
 A: android:name(0x01010003)=".ServiceModeAppBroadcastReceiver" (Raw:
".ServiceModeAppBroadcastReceiver")
 A: android:permission(0x01010006)="com.sec.android.app.servicemodeapp.permission.KEYSTRING" (Raw:
"com.sec.android.app.servicemodeapp.permission.KEYSTRING")
 E: intent-filter (line=164)
 E: action (line=165)
 A: android:name(0x01010003)="android.provider.Telephony.SECRET_CODE" (Raw:
"android.provider.Telephony.SECRET_CODE")
 E: data (line=167)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="22558463" (Raw: "22558463")
 E: data (line=170)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="RTN" (Raw: "RTN")
 E: data (line=173)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="3214789650" (Raw: "3214789650")
 E: data (line=176)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="9900" (Raw: "9900")
 E: data (line=179)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="0514" (Raw: "0514")
 E: data (line=182)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="66336" (Raw: "66336")
 E: data (line=185)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="66336324" (Raw: "66336324")
 E: data (line=188)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="99007788" (Raw: "99007788")
 E: data (line=191)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="638732" (Raw: "638732")
 E: data (line=195)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="7284" (Raw: "7284")
 E: data (line=198)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="06" (Raw: "06")
 E: data (line=202)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="272886" (Raw: "272886")
 E: data (line=205)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")
 A: android:host(0x01010028)="773738" (Raw: "773738")
 E: data (line=209)
 A: android:scheme(0x01010027)="android_secret_code" (Raw: "android_secret_code")

 A: android:host(0x01010028)="0808" (Raw: "0808")
 E: intent-filter (line=214)
 E: action (line=215)
 A:
android:name(0x01010003)="com.samsung.intent.action.SEC_FACTORY_RESET_WITHOUT_FACTORY_UI"
(Raw: "com.samsung.intent.action.SEC_FACTORY_RESET_WITHOUT_FACTORY_UI")
 E: receiver (line=218)
 A: android:name(0x01010003)=".ServiceModeAppBroadcastReceiver" (Raw:
".ServiceModeAppBroadcastReceiver")
 E: intent-filter (line=219)
 E: action (line=220)
 A: android:name(0x01010003)="android.intent.action.BOOT_COMPLETED" (Raw:
"android.intent.action.BOOT_COMPLETED")
 E: action (line=221)
 A: android:name(0x01010003)="com.sec.android.app.servicemodeapp.NOTIDUMP_OFF" (Raw:
"com.sec.android.app.servicemodeapp.NOTIDUMP_OFF")
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

APPENDIX 3

Models and Android 5.0.2 builds that can introduce the non-existent notification listener vulnerability.

Model Build Number
SM-G9250 LRX22G.G9250ZTU1AODC
SM-G9250 LRX22G.G9250ZCU1AOE4
SM-G9250 LRX22G.G9250ZCU1AOE8
SM-G9250 LRX22G.G9250ZCU1AOE7
SM-G9250 LRX22G.G9250ZTU1AOEA
SM-G9250 LRX22G.G9250ZCU1AOF8
SM-G9250 LRX22G.G9250ZTU1AOF1
SM-G925A LRX22G.G925AUCU1AOCE
SM-G925F LRX22G.G925FXXU1AOCV
SM-G925F LRX22G.G925FXXU1AOCZ
SM-G925I LRX22G.G925IDVU1AOC4
SM-G925I LRX22G.G925IDVU1AOE2
SM-G925K LRX22G.G925KKKU1AOD8
SM-G925K LRX22G.SC04GOMU1AOD2
SM-G925K LRX22G.G925KKKU1AODC
SM-G925K LRX22G.G925KKKU1AOE6
SM-G925K LRX22G.G925KKKU1AOF6
SM-G925L LRX22G.G925LKLU1AOD8
SM-G925L LRX22G.G925LKLU1AODC
SM-G925L LRX22G.G925LKLU1AOE6
SM-G925P LRX22G.G925PVPU1AOCF
SM-G925P LRX22G.G925PVPU1AOE2

SM-G925R4 LRX22G.G925R4TYU1AOD3
SM-G925R4 LRX22G.G925R4TYU1AOE2
SM-G925S LRX22G.G925SKSU1AOD5
SM-G925S LRX22G.G925SKSU1AOD8
SM-G925S LRX22G.G925SKSU1AODC
SM-G925S LRX22G.G925SKSU1AOE6
SM-G925S LRX22G.G925SKSU1AOF3
SM-G925T LRX22G.G925TTMB1AOCG
SM-G925V LRX22G.G925VVRU1AOC3
SM-G925V LRX22G.G925VVRU1AOE2
SM-G925V LRX22G.G925VVRU2AOF1

SM-G925W8 LRX22G.G925W8VLU1AOCG
SM-G925W8 LRX22G.G925W8VLU1AOE1
SM-G925W8 LRX22G.G925W8VLU2AOG2
SM-G925X LRX22G.G925XXXU1AOC6_LLK

SC-04G LRX22G.SC04GOMU1AOD2
SC-04G LRX22G.SC04GOMU1AOE1
SC-04G LRX22G.SC04GOMU1AOH4
SC-04G LRX22G.SC04GOMU1APA5
SC-04G LRX22G.SC04GOMU1AOG3

REFERENCES

ArrayMap. (n.d.). Retrieved from https://android.googlesource.com/platform/frameworks/base/+/android-

6.0.0_r1/core/java/android/util/ArrayMap.java.

Bhattacharya, P., Yang, L., Guo, M., Qian, K., & Yang, M. (2014). Learning mobile security with Labware. IEEE

Security & Privacy, 12(1), 69-72.

Bagheri, H., Sadeghi, A., Garcia, J., & Malek, S. (2015). Covert: Compositional analysis of android inter-app

permission leakage. IEEE Transactions on Software Engineering, 41(9), 866-886.

Chin, E., Felt, A. P., Greenwood, K., & Wagner, D. (2011). Analyzing inter-application communication in Android.

In Proceedings of the 9th international conference on Mobile systems, applications, and services (pp. 239-
252). ACM.

Fedler, R., Schütte, J., & Kulicke, M. (2013). On the effectiveness of malware protection on android. Fraunhofer

AISEC, 45.

Grace, M. C., Zhou, Y., Wang, Z., & Jiang, X. (2012). Systematic Detection of Capability Leaks in Stock Android

Smartphones. In NDSS (Vol. 14, p. 19).

IntentResolver. (n.d.). Retrieved from https://android.googlesource.com/platform/frameworks/base/+/android-

6.0.0_r1/services/core/java/com/android/server/IntentResolver.java.

NotificationListenerService. (n.d.) Retreived from http://developer.android.com/reference/android/service/

notification/NotificationListenerService.html.

Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., & Le Traon, Y. (2013). Effective inter-

component communication mapping in android: An essential step towards holistic security analysis.
In Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13) (pp. 543-558).

OTA Updates. (n.d.). Retrieved from https://source.android.com/devices/tech/ota/.

PackageManagerService. (n.d.). Retrieved from https://android.googlesource.com/platform/frameworks/base/+/

android-6.0.0_r1/services/core/java/com/android/server/pm/PackageManagerService.java.

PackageParser. (n.d.). Retrieved from https://android.googlesource.com/platform/frameworks/base/+/56a2301/

core/java/android/content/pm/PackageParser.java.

Potharaju, R., Newell, A., Nita-Rotaru, C., & Zhang, X. (2012). Plagiarizing smartphone applications: attack

strategies and defense techniques. In International Symposium on Engineering Secure Software and
Systems (pp. 106-120). Springer Berlin Heidelberg.

Settings. (n.d.). Retrieved from https://android.googlesource.com/platform/frameworks/base/+/android-

6.0.0_r1/core/java/android/provider/Settings.java.

Settings.Secure. (n.d.). Retrieved from http://developer.android.com/reference/android/provider/Settings.

Secure.html.

Vidas, T., & Christin, N. (2013). Sweetening android lemon markets: measuring and combating malware in

application marketplaces. In Proceedings of the third ACM conference on Data and application security
and privacy (pp. 197-208). ACM.

Zhou, Y., & Jiang, X. (2012). Dissecting android malware: Characterization and evolution. In 2012 IEEE

Symposium on Security and Privacy (pp. 95-109). IEEE.

